第三届墨子论坛数学分论坛报告

时间:2019-04-11

第三届墨子论坛数学分论坛

419日周五下午    东区五教5505

230-315

报告人

林龙智    University of California Santa Cruz

报告题目

Energy convexity of intrinsic bi-harmonic map and its heat flow

报告摘要

In this talk, we will discuss an energy convexity for weakly intrinsic bi-harmonic maps from the unit 4-ball in R^4 into the sphere S^n. In particular, this yields a version of uniqueness of weakly harmonic maps on the unit 4-ball, which is new. We will also discuss a version of energy convexity along the intrinsic bi-harmonic map heat flow into S^n, which in particular yields the long-time existence and uniform convergence of the intrinsic bi-harmonic map heat flow, a result that was until now only known assuming the non-positivity of the target manifolds by Lamm in 2005. This is joint work with Paul Laurain.

报告人概况

报告人2011年博士毕业于Johns Hopkins University, 师从Bill Minicozzi教授。 2011 ? 2014年在Rutgers University做博士后。2014年加入University of California Santa Cruz任助理教授,2018年被提升为终身副教授。

315-400

报告人

王常亮    德国马普数学所

报告题目

Linear stability of Einstein metrics

报告摘要

Einstein metrics on a compact manifold are critical points of the normalized total scalar curvature functional. So it is natural to study the behavior of the second variation of the normalized total scalar curvature functional at an Einstein metric. This is known as the linear stability problem of Einstein metrics. In this talk, we will briefly review previous works on this problem, and then I will report our recent work on the linear stability of some interesting Einstein manifolds, including some Riemannian manifolds with real Killing spinors, and Einstein metrics from bundle constructions. This is a joint work with Prof. McKenzie Wang.

报告人概况

报告人2004年至2011年期间在中国科学技术大学学习,取得数学专业学士和硕士学位;2011年至2016年在加州大学圣芭芭拉分校学习,取得数学博士学位。2016年至2018年在加拿大McMaster大学做博士后;2018年至2020年在德国马普数学所做博士后。王常亮博士主要从事微分几何和几何分析方向的研究,主要包括,爱因斯坦度量的稳定性问题,和带锥形奇点的流形上的一些几何和分析问题。一些成果发表或待发表于:Int. J. Math.J. Geom. Anal.Math. Res. Lett.Pure Appl. Math. Q.

415-500

报告人

俞韦亘    台湾中央大?

报告题目

Maximum spherical two-distance set

 

报告摘要

I will talk about the history of spherical two-distance set problem which is a classical problem in discrete geometry area. We use the symbolic semidefinite programming method to obtain the result of maximum spherical two-distance set for infinitely many dimensions. The result is published in Adv. in Math, 2018.

报告人概况

美??里?大???,?任密西根州立大?visiting assistant professor?布朗大?ICERM postdoc researcher?中央大?助理教授。研究????散?何,曾?表文章在Euro. J. of Combinatorics (?洲?合), SIAM Discrete Math ? Adv. in Math(???展)等????。

420日周六上午    东区管理科研楼1318

830-9: 15

报告人

韩邦先    以色列理工澳门新葡新京官方网站

报告题目

流形上的最优传输理论:不等式与刚性定理

报告摘要

进入新世纪以来,最优传输理论得到了前所未有的发展。其中最具有代表性的方向便是最优传输理论的度量几何应用, 近十年来已有两位Fields奖得主的工作与之密切相关。本报告将先容黎曼流形、次黎曼流形上最优传输的最新研究进展。报告人将着重先容利用最优传输理论研究几何、泛函不等式最优常数,以及几个重要不等式所蕴含的测度、度量刚性定理。

报告人概况

2011年毕业于科大数学澳门新葡新京官方网站,2015年于法国巴黎九大获得博士学位。2015-2018在德国波恩大学,2018-2019在以色列理工澳门新葡新京官方网站作为博士后进行研究工作。研究方向为最优传输理论及其应用,特别是在度量几何与几何、泛函不等式方面的应用。

915-1000

报告人

霍晓凯    阿卜杜拉国王科技大学

报告题目

High-friction limits of Euler flows for multicomponent systems

报告摘要

We consider the high-friction limit in Euler-Korteweg equations for fluid mixtures. We use relative entropy method to show the convergence of the solutions towards the zeroth-order limiting system and the first-order correction, assuming suitable uniform bounds.

报告人概况

霍晓凯,沙特阿卜杜拉国王科技大学博士后。博士毕业于清华大学周培源应用数学中心,研究方向:非线性偏微分方程。相关成果发表在Journal of Differential Equations, Nonlinearity, Communication of Mathematical Sciences上。

1015-1100

报告人

王帅坤    阿卜杜拉国王科技大学

报告题目

Existence and smoothing effect of measure valued solution to the homogeneous Boltzmann equation with Debye-Yukawa potential

报告摘要

We considered the measure valued solution to the homogeneous Boltzmann equation with two models of Debye-Yukawa type. For the first type, related to the true Debye-Yukawa potential, we obtained the existence of the solution and proved some important properties of the solution. To the best of our knowledge, this is the first literature discussing such collision kernel. For the second type, which is the Maxwellian molecule of Deybe-Yukawa type, we  introduced a new coercivity estimate and proved the solution $F_t/in H^{/infty}(/bR^2)$ for any $t>0$, as long as the initial data $F_0$ is not a Dirac mass.

报告人概况

王帅坤,男,1988年出生。20126月本科毕业于中国科学技术大学数学系。2016年博士毕业于香港城市大学数学系。目前在沙特国王科技大学做博士研究工作,从事偏微分方程理论的研究与应用。研究兴趣包括玻尔兹曼方程测度值解相关问题等。

420日周六下午    东区管理科研楼1318

230-315

报告人

韩梦捷    瑞典达拉纳大学

报告题目

Next frontier of building energy control: the reinforcement learning method

报告摘要

先容强化学习方法在能源控制上的发展与应用

报告人概况

报告人曾先后担任多门课的教学工作。博士后期间,参与并完成了多个科研项目,主要运用统计学、线性规划、机器学习等方法对地理信息数据、人口数据、零售业经济数据、建筑能源数据等所产生的优化问题进行建模、分析。已发表学术论文十篇,其中SCI六篇,另有四篇在审。今后发展方向:结合人工智能技术,在城市规划与发展、能源环境等方面做出突破。

315-400

报告人

      Max Planck Institute for Dynamics of Complex Technical Systems

报告题目

Structure Exploiting Algorithms for Computational Science and Engineering

报告摘要

For most problems in computational science and engineering (CSE), the biggest challenge is the computational complexity due to the fact that the problems to be resolved are large-scale. In this talk, I will introduce how to exploit the structure of the underlying problems to design fast numerical algorithms to reduce the computational complexity. The building block is the low-rank approximation which is widely used to beat the curse of dimensionality. I will show how to perform structured matrix and tensor computations to solve large-scale problems in PDE-constrained optimization, uncertainty quantification, and energy networks.

报告人概况

报告人分别于20092011年在东北大学自动化和控制理论与控制工程专业取得学士和硕士学位。201512月在荷兰代尔夫特理工大学取得计算数学博士学位。201512月至今在德国马克斯普朗克复杂动力系统研究所从事计算科学和能源网络相关的博士后研究工作。主要研究方向为科学计算, 不确定性量化, 数据同化, 模型降阶及数学与控制、信息学科交叉研究领域。主要研究成果发表在SIAM J. Uncertain. Quantif. Electron. Trans. Numer. Anal. Comput. Geosci. 等专业刊物上。

415-500

报告人

佘邦伟    捷克科澳门新葡新京官方网站数学研究所

报告题目

Convergence of a finite volume scheme for the compressible Navier-Stokes system

报告摘要

We study the convergence of a finite volume method for the compressible Navier-Stokes equations. The key features are the consideration of the full range of physical relevant adiabatic exponent and the application of an artificial diffusion and the dissipative measure-valued solution (DMVS). We show that the scheme is unconditionally stable and upon that we build up the consistency formulae of the scheme. Finally, we show the convergence of the numerical solution (via DMVS) to the strong solution as long as the latter exists.

报告人概况

2008年毕业于中国科技大学近代力学系,2011年毕业于中国工程物理研究院流体力学专业,2015年获得美茵茨大学数学博士学位。随后在捷克科澳门新葡新京官方网站数学所从事博士后研究,自2018年5月起转为准聘研究员。主要研究方向为流体方程组的数值模拟和分析,包括数值解的稳定性和收敛性。在数值方法上有着多尺度计算,动理学方法,以及有限差分/体积/元方法等多种算法的实践经验。目前在sci期刊SIAM Multiscale Model.Simul.J.Comut.Phys IMA J.Numer.Anal Int.J.Numer.Methods FluidsJ.Numer.Math;上共计发表6篇文章。

 

 

 

 

 



















































































 欢迎广大师生参加!

XML 地图 | Sitemap 地图