张希

时间:2019-11-13

电话:86-0551-63606279

Email:mathzx@ustc.edu.cn

研究方向:主要从事整体微分几何、几何分析、复几何等方面的研究。

 

张希,男,19727月出生于浙江黄岩,现为澳门新葡新京教授、博士生导师,2012年择优入选中国科澳门新葡新京官方网站“百人计划”B类,2016年获国家自然科学基金杰出青年基金。19899月进入杭州大学数学系读本科,基础数学专业,19936月本科毕业获理学学士学位;19939--19986月于杭州大学硕博连读,导师为白正国教授和沈一兵教授,19986月于杭州大学获理学博士学位;19988进入浙江大学任教200512月评定为教授,20119月调入澳门新葡新京。

 

 

主要论著:

1Li, Yuang; Zhang, Chuanjing; Zhang, Xi A Liouville theorem on complete non-K?hler manifolds. Ann. Global Anal. Geom.55 (2019), no. 4, 623–629.

2Liu, Jiawei; Zhang, Xi Cusp K?hler-Ricci flow on compact K?hler manifolds. Ann. Mat. Pura Appl. (4)198 (2019), no. 1, 289–306.

3Li, Jiayu; Zhang, Chuanjing; Zhang, Xi A note on curvature estimate of the Hermitian-Yang-Mills flow. Commun. Math. Stat.6 (2018), no. 3, 319–358.

4Li, Chao; Li, Jiayu; Zhang, Xi A C2,α estimate of the complex Monge-Ampère equation. J. Funct. Anal.275 (2018), no. 1, 149–169.

5Nie, Yanci; Zhang, Xi Semistable Higgs bundles over compact Gauduchon manifolds. J. Geom. Anal.28 (2018), no. 1, 627–642.

6Li, Jiayu; Zhang, Chuanjing; Zhang, Xi The limit of the Hermitian-Yang-Mills flow on reflexive sheaves. Adv. Math.325 (2018), 165–214.

7Liu, Jiawei; Zhang, Xi The conical K?hler-Ricci flow with weak initial data on Fano manifolds. Int. Math. Res. Not. IMRN2017, no. 17, 5343–5384.

8Li, Jia Yu; Zhang, Chuan Jing; Zhang, Xi The Hermitian-Yang-Mills flow on Higgs sheaves. (Chinese) J. Univ. Sci. Technol. China47 (2017), no. 2, 87–98.

9Li, Jiayu; Zhang, Chuanjing; Zhang, Xi Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. Partial Differential Equations56 (2017), no. 3, Art. 81, 33 pp.

10Li, Jiayu; Zhang, Xi The limit of the Yang-Mills-Higgs flow on Higgs bundles. Int. Math. Res. Not. IMRN2017, no. 1, 232–276.

11Liu, Jiawei; Zhang, Xi Conical K?hler-Ricci flows on Fano manifolds. Adv. Math.307 (2017), 1324–1371.

12Jin, Xishen; Liu, Jiawei; Zhang, Xi Twisted and conical K?hler-Ricci solitons on Fano manifolds. J. Funct. Anal.271 (2016), no. 9, 2396–2421.

13Jin, Xishen; Zhang, Xi Uniqueness of constant scalar curvature Sasakian metrics. Ann. Global Anal. Geom.49 (2016), no. 4, 309–328.

14Nie, Yanci; Zhang, Xi A note on semistable Higgs bundles over compact K?hler manifolds. Ann. Global Anal. Geom.48 (2015), no. 4, 345–355.

15Li, Jiayu; Zhang, Xi Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles. Calc. Var. Partial Differential Equations52 (2015), no. 3-4, 783–795.

16Zhang, Xi; Zhang, Xiangwen Generalized K?hler-Einstein metrics and energy functionals. Canad. J. Math.66 (2014), no. 6, 1413–1435.

17Li, Jia-yu; Zhang, Xi Progress on asymptotic behavior of the Yang-Mills-Higgs flow. Appl. Math. J. Chinese Univ. Ser. B28 (2013), no. 4, 565–574.

18Shen, Bin; Shen, Yibing; Zhang, Xi Holomorphic maps from Sasakian manifolds into K?hler manifolds. Chin. Ann. Math. Ser. B34 (2013), no. 4, 575–586.

19Zhang, Xi Hermitian harmonic maps between almost Hermitian manifolds. Recent developments in geometry and analysis, 485–493, Adv. Lect. Math. (ALM), 23, Int. Press, Somerville, MA, 2012.

20Wang, Yue; Zhang, Xi Dirichlet problem for Hermitian-Einstein equation over almost Hermitian manifold. Acta Math. Sin. (Engl. Ser.)28 (2012), no. 6, 1249–1260.

21Guan, Pengfei; Zhang, Xi Regularity of the geodesic equation in the space of Sasakian metrics. Adv. Math.230 (2012), no. 1, 321–371.

22Dinew, S?awomir; Zhang, Xi; Zhang, Xiangwen The C2,α estimate of complex Monge-Ampère equation. Indiana Univ. Math. J.60 (2011), no. 5, 1713–1722.

23Guan, Pengfei; Zhang, Xi A geodesic equation in the space of Sasakian metrics. Geometry and analysis. No. 1, 303–318, Adv. Lect. Math. (ALM), 17, Int. Press, Somerville, MA, 2011.

24 Li, Jiayu; Zhang, Xi The gradient flow of Higgs pairs. J. Eur. Math. Soc. (JEMS)13 (2011), no. 5, 1373–1422.

25Zhang, Xi Some invariants in Sasakian geometry. Int. Math. Res. Not. IMRN2011, no. 15, 3335–3367.

26Zhang, Xi Energy properness and Sasakian-Einstein metrics. Comm. Math. Phys.306 (2011), no. 1, 229–260.

27Zhang, Xi; Zhang, Xiangwen Regularity estimates of solutions to complex Monge-Ampère equations on Hermitian manifolds. J. Funct. Anal.260 (2011), no. 7, 2004–2026.

28Wang, Yue; Zhang, Xi Twisted holomorphic chains and vortex equations over non-compact K?hler manifolds. J. Math. Anal. Appl.373 (2011), no. 1, 179–202.

29Zhang, Xi A note of Sasakian metrics with constant scalar curvature. J. Math. Phys.50 (2009), no. 10, 103505, 11 pp.

30Guan, Pengfei; Li, Qun; Zhang, Xi A uniqueness theorem in K?hler geometry. Math. Ann.345 (2009), no. 2, 377–393.

31Wang, Yue; Zhang, Xi A class of Kazdan-Warner typed equations on non-compact Riemannian manifolds. Sci. China Ser. A51 (2008), no. 6, 1111–1118.

 


XML 地图 | Sitemap 地图